

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

TRAFFIC PROFILING OF WIRELESS SENSOR
NETWORKS

by

Georgios Kirykos

December 2006

 Thesis Advisor: John McEachen
 Second Reader: Murali Tummala

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Traffic Profiling in Wireless Sensor Networks

6. AUTHOR(S) Georgios Kirykos

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Network security is vital in wireless networks that are widely used today. We desire wireless networks

that maintain a high degree of confidentiality, integrity, and availability. Wireless sensor networks pose unique
challenges and limitations to the traditional schemes, which are used in the other wireless networks for security
protection, and are due mainly to the increased vulnerability of physical attacks, energy and communication
limitations. This thesis introduces the foundations of a network and anomaly-based Intrusion Detection System
(IDS) tool, including both hardware and software components, that can be used for traffic profiling and monitoring
of a wireless sensor network. The work demostrates how the IDS should capture and store traffic and use this
information to create traffic profiles and baselines for normal traffic behavior. Then it describes how these
baselines can be used to generate alerts based on traffic variations that imply possible attacks. Profiles on typical
implementations of wireless sensor networks were observed and analyzed. Finally, initial indications from basic
analysis of wireless sensor network traffic demonstrated a high degree of self-similarity.

15. NUMBER OF
PAGES

87

14. SUBJECT TERMS Wireless Sensor Networks, Intrusion Detection System (IDS), Self similarity,
Packet Sniffer

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

TRAFFIC PROFILING OF WIRELESS SENSOR NETWORKS

Georgios Kirykos
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Author: Georgios Kirykos

Approved by: John C. McEachen

Thesis Advisor

 Murali Tummala
 Second Reader

 Jeffrey B. Knorr
 Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Network security is vital in wireless networks that are widely used today. We

desire wireless networks that maintain a high degree of confidentiality, integrity, and

availability. Wireless sensor networks pose unique challenges and limitations to the

traditional schemes, which are used in the other wireless networks for security protection,

and are due mainly to the increased vulnerability of physical attacks, energy and

communication limitations. This thesis introduces the foundations of a network and

anomaly-based Intrusion Detection System (IDS) tool, including both hardware and

software components, that can be used for traffic profiling and monitoring of a wireless

sensor network. The work demonstrates how the IDS should capture and store traffic and

use this information to create traffic profiles and baselines for normal traffic behavior.

Then it describes how these baselines can be used to generate alerts based on traffic

variations that imply possible attacks. Profiles on typical implementations of wireless

sensor networks were observed and analyzed. Finally, initial indications from basic

analysis of wireless sensor network traffic demonstrated a high degree of self-similarity.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVES ..1
C. RELATED WORK ..2
D. THESIS ORGANIZATION..2

II. BACKGROUND THEORY FOR UNATTENDED SENSOR NETWORKS........5
A. APPLICATIONS ...6

1. Military Applications...6
2. Environmental Detection and Monitoring...7
3. Civil Engineering and Home Intelligence ..8
4. Health Monitoring ...8

B. ELEMENTS OF WIRELESS SENSOR NETWORKS8
C. TECHNOLOGY COMPONENT EVOLUTION..9

1. Digital Circuitry ...11
2. Wireless Communications...11
3. Microelectromechanical Systems (MEMS)12

D. SUMMARY ..14

III. SENSOR MOTE TYPES ..15
A. MOTE TYPES AND DESCRIPTION...15

1. Micaz mote..15
2. Telos Rev B Mote ...16
3. MIB 510 Programming Platform ...17
4. MTS 310 Multipurpose Sensor Board ...18

a. Microphone and Tone Detector..18
b. Temperature Detector (Panasonic ERT-J1VR103J).............18
c. Two-axis Accelerometer (ADI ADXL202)18
d. Two-axis Magnetometer (HMC1002)18
e. Sounder..18

B. EXPERIMENT LAYOUT ..19
C. SUMMARY ..20

IV. SENSOR NETWORK TRAFFIC TYPES ..21
A. 802.15.4 AND ZIGBEE ARCHITECTURE..21
B. TINYOS/XMESH PACKET STRUCTURE AND ANALYSIS23
C. SUMMARY ..28

V. TRAFFIC CAPTURE SNIFFER DESIGN...31
A. SNIFFER ANATOMY ..31
B. DESCRIPTION OF JAVA CLASSES...33
C. OUTPUT...34
D. SUMMARY ..36

VI. TRAFFIC CATEGORIZATION FRAMEWORK ..37

 viii

A. TRAFFIC STATISTICS ...38
1. Direct Motes to Base Connection..38
2. Parent-Child Network Deployment..40

B. ESTIMATING SELF SIMILARITY IN WSN ...45
C. SUMMARY ..49

VII. CONCLUSIONS AND FUTURE WORK...51
A. CONCLUSIONS ..51
B. FUTURE WORK...52

APPENDIX A. ..55
A. SNIFFER JAVA CLASS...55
B. ACTIVE MESSAGE JAVA CLASS..60
C. OUTPUTTOCSV JAVA CLASS..61
D. DISPLAYWINDOW JAVA CLASS..61

APPENDIX B. ..63

LIST OF REFERENCES..65

INITIAL DISTRIBUTION LIST ...67

 ix

LIST OF FIGURES

Figure 1. Basic elements of a Wireless Sensor Network (From Ref. 1).9
Figure 2. Illustration of decreasing in size of computational devises vs. time (From

Ref. 1). ...10
Figure 3. Solar powered, bi-directional communications & sensing (acceleration,

ambient light) (From Ref. 8). ...10
Figure 4. Gear set produced using MEMS compared with a mite (From Ref. 8).14
Figure 5. Micaz hardware description (From Ref. 1)..15
Figure 6. TelosB hardware description (From Ref. 1). ...16
Figure 7. MIB510 Serial Interface Programming board (From Ref. 1).18
Figure 8. MTS 310 Multipurpose sensor board (From Ref. 1).19
Figure 9. Experiment layout with a base station on the top right....................................19
Figure 10. IEEE 802.15.4 and Zigbee Layer Architecture (From Ref. 1).........................21
Figure 11. Xmesh and Zigbee protocol layering share the same MAC and PHY lower

layer (From Ref. 1). ...22
Figure 12. TinyOS Physical Message Packet (From Ref. 1). ...23
Figure 13. TinyOS Packet Structure (From Ref. 1). ...24
Figure 14. Sniffer application block diagram..32
Figure 15. Illustration of the displayWindow java program; a GUI for traffic

monitoring..35
Figure 16. Illustration of the CSV file format ...35
Figure 17. Traffic percentage statistics in accordance to Active Message type................39
Figure 18. Traffic percentage statistics in accordance to Active Message type for the

Parent-Child setup..41
Figure 19. Traffic percentage statistics comparison in accordance to Active Message

type for Direct Base-Motes communication and Parent-Child setup.41
Figure 20. Number of packets vs. payload length in direct communication scenario.44
Figure 21. Number of packets vs. Payload Length in Parent-Child communication

scenario. ...45
Figure 22. Logarithm of Variance Payload Length vs. Aggregated Average Payload

Length Plot for the direct scenario...47
Figure 23. Logarithm of the Variance of packet Interarrival Time versus Aggregated

Time plot for the direct to base communication scenario................................48
Figure 24. Logarithm of variance of packet Payload Length versus Aggregated

Average Packet Length plot for the Parent-Child communication scenario....48
Figure 25. Logarithm of the Variance of packet Interarrival Time versus Aggregated

Time plot for the Parent-Child communication scenario.................................49

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Chronological evolution of motes from different vendors in terms of size,
weight, power supply, topology, deployment methods. (From Ref. 1)12

Table 2. Micaz performance characteristics. (From Ref. 1) ..16
Table 3. TelosB performance characteristics. (From Ref. 1)...17
Table 4. Identification Number for Active Message Types (From Ref. 12)..................26
Table 5. Summary of the Base and Motes messages properties and differences...........28
Table 6. Traffic characteristics for all Active Message type on direct scenario.40
Table 7. Traffic characteristics according to active message types for the parent-

child radio communication scheme. ..43

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank Professor John McEachen who has been my thesis

supervisor and mentor. Your insight is absolutely invaluable and your knowledge in

Electrical and Computer Engineering is immeasurable.

Thank you, to my second reader, Professor Murali Tummala for bringing your

unique talent to this project. A strong foundation of knowledge was built through your

teaching.

Thank you, to Lt Timothy Zane, USN, for your guidance and help in computer

programming and computer science related materials.

Thank you to my friends Nikolaos Alchazidis, Stefanos Filtikakis, and Evanna

Stefanakis for your help and support.

Lastly, and most importantly, I wish to thank my parents, Vassilios Kirykos and

Irene Kirykos, who have unfailingly given me constant support throughout my life. I

thank you for always believing in me and your endless knowledge and guidance are the

reason I continue to press on in my career. To you, I dedicate this thesis.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Human need has always been the factor that has driven all technologies and

applications. Today with the wide spread of internet and wireless communications, the

human need for real-time sensing of the environment has emerged which has led to the

development of wireless sensor networks. Although other wireless technologies have

been implemented for many years and many issues have arisen and been solved, these

networks pose unique challenges. Physical vulnerability, energy and communication

constraints distinguish sensor networks from the IEEE 802.11 family wireless networks.

These dissimilarities impose extra security vulnerabilities that the existing protocols and

tools cannot address effectively.

One way of addressing network security is through intrusion detection. A

network-based anomaly intrusion detection system requires a packet sniffer. A packet

sniffer is a device composed of hardware and software components that can be used to

capture and store the exchanged data within a network. The procedure that should follow

consists of two parts. The first part deals with capturing the data and analyzing the

exchanged traffic to identify traffic characteristics. This traffic profiling and

categorization can be used as a baseline of normal behavior. The second part simply

compares real-time traffic characteristics with normal traffic and checks if differences

would apply. The major advantage of this technique is that it can identify all possible

attacks (not only the known ones).

The layered architecture for the motes that were used follows the two lower layers

of the OSI model where the physical and Medium Access Control (MAC) layers adhere

to the IEEE 802.15.4 standard. This is especially true for the physical layer, which was

implemented into hardware within a CC2400 Chipcon transceiver. The upper layers were

modeled by Crossbow Inc. applications, such as Xmesh and Surge, and complied with the

Zigbee alliance higher layer architecture. The operating system that handles the

intercommunication between hardware and software components was TinyOS. The

traffic profiling was based on the MAC layer packet structure and

 xvi

more specifically upon the Active Message index. This index is used by Xmesh and is

used to handle the incoming packets from the MAC layer to the appropriate application.

It is very similar to the TCP port number.

In this thesis, a packet sniffer consisted of a java program sniffer and a hardware

sniffing component. Specifically, a TelosB mote was used to capture the traffic between

three motes. Two basic deployment topologies for the motes were used. In the first case,

the motes were in line of sight and within radio distance of the base station. In the second

scenario, the one mote was put out of radio distance of the base mote so that its data

would have to be relayed by the other mote, creating a “parent-child” relationship.

All data were stored on a laptop computer that ran the packet sniffer device in a

comma separated value (CSV) format, which was then imported into an excel

spreadsheet for statistical analysis. The analysis was based on grouping the packets in

terms of Active Message index and then comparing the destination and originating

address, interarrival times, and packet payload length. This process revealed the

following.

Each traffic type occupied a different percentage of the total traffic. It was found

that the data traffic encompassed 71%, health and routing traffic 23%, and finally

acknowledgement 6% of the total traffic.

Examination of the packet length and the interarrival times of the packets in

different time aggregations, in a variance-time plot on a logarithmic scale, indicated that

the traffic is self-similar. That was also witnessed by visual examination of the traffic,

where each packet type was clustered. This means that every packet is largely dependent

on the previous packets received, and upon reception of a specific message type, the same

packet type is more likely to be received.

A comparison of the different packet type payload lengths and interarrival times

revealed some discrepancies with the protocol specifications with very large variations, a

fact which requires further investigation.

 xvii

The payload lengths observed extended from 11 to 27 bytes and never exceeded

29 bytes, which is the maximum packet length for the protocol used. Different packet

types used specific payload lengths.

To summarize, the traffic categorization, according to Active Message type, held

enough information to characterize the traffic, the java program Sniffer can be used as a

network-based, anomaly-based, intrusion detection system. The overall traffic

demonstrated long range dependency since was found to be self-similar with high Hurst

parameter values (H > 0.98).

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
Wireless Sensor Networks are becoming important for many commercial and

military applications where real time information is needed and there is lack of

Information Technology (IT) infrastructure. These networks consist of a number of

sensors, usually tens to thousands, and are spread throughout a specified geographical

area. Some examples of these networks are the following [1]:

1. Military networks, designed to detect and gain information about an enemy’s

location and movement, weapon explosions, and chemical, biological, radiological and

nuclear attacks.

2. Wireless sensor networks that detect and monitor environmental changes across

plains, forests and oceans. Agricultural operations are a good example in this category.

3. Infrastructure monitoring wireless sensor networks, which monitor vehicle

traffic on highways, the congested parts of cities and other similar applications. An

extension in this area is the security monitoring of large public areas, such as malls and

parking garages, and control and monitoring of machines in industries.

In such environments as briefly described above, IT infrastructure is not present

or is very poor, and cabling is prohibited due to cost, time or access. The most

inexpensive, quick and reliable way of information collection can be provided by the

deployment of a wireless sensor network.

B. OBJECTIVES
The objective of this thesis is to develop a tool that would allow investigating

traffic characteristics of unattended wireless sensor networks consisting of motes

interacting in a traditional setting. More specifically, the proposed tool allows the

identification of different packet types that include control, management, routing and user

data, and categorizes traffic in such way to allow for the identification of anomalies and

variations in traffic patterns that could be used in an intrusion detection system.

2

C. RELATED WORK
All packet-based networks, both wired and wireless, are vulnerable to attacks, a

fact that provides a very good background of what we should expect in a wireless sensor

network and serves as very good point for further research. One of the tools that is widely

used today, as a traffic analysis, diagnosis and attack tool, is a packet sniffer.

For the family of IEEE 802.11 wireless networks, widely used packet sniffers are

Ethereal [2], Tcpdump [3] and others. Those programs are widely used to analyze

network traffic, to detect network intrusion attacks, to provide network statistics, and/or

to capture sensitive information from other networks.

A packet sniffer for TinyOS-based wireless sensor networks was designed by

Hong-Siang Teo [4] and was used to validate some of the security properties that exist in

such a sensor network. This packet sniffer was modified by this thesis, with the addition

of several components that served the functionalities needed for traffic analysis and

profiling, according to specific components of the Medium Access Control (MAC)

header and payload.

D. THESIS ORGANIZATION
Chapter I contains an introduction to the thesis and aims to familiarize the reader

with wireless sensor network applications and related work in the literature. Chapter II

provides background information and a discussion of the evolution of wireless sensor

networks as well as their components. It also discusses why these networks are becoming

very popular nowadays, increasing their share in the market. In Chapter III, a detailed

description of the hardware components and their specifications that were used in this

experiment is provided. This chapter closes with a layout of the experiment, describing

how the wireless sensor network was deployed, what hardware components were used,

and how the traffic was captured.

Chapter IV deals with the software components. It provides an analysis of the

protocol used to handle the information exchange in this network and emphasizes the

components which this thesis is going to use for the categorization of the data traffic.

Chapter V provides a description of the software used for the traffic capturing,

emphasizing the three programs that were written for this purpose and providing a

3

detailed analysis of their functionality. The detail of the program code is printed in

Appendix A. The analysis and profiling of the traffic follows in Chapter VI, and the

thesis ends with Chapter VII, where conclusions and future work are discussed.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND THEORY FOR UNATTENDED SENSOR
NETWORKS

It is evident that the research of commercial and military Wireless Sensor

Networks (WSN) is growing exponentially. This fact can be manifested by the increasing

number of searches conducted through Internet sources, such as Google. In August 2003

there where 8,000 hits for WSN while today the number of hits exceeds 26,000 [5]. There

has also been an increase in the amount of annual workshops, some of which include

IPSN (Information Processing in Sensor Networks), SenSys, EWSN (European

Workshop on Wireless Networks and Applications) and other conference sessions

dedicated to this subject, such as ISIT, ICC, INFOCOM [5], and the IEEE

Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and

Networks (SECON) [6]. Many vendors today offer a variety of applications and motes

which are able to accomplish almost any kind of commercial and military need for

remote, real-time applications and more are to come.

Compared to the use of a few, large, expensive but highly accurate sensors, it is

more cost efficient to deploy a large number of inexpensive sensors that offer the

advantage of a smaller total system expenditure with much higher spatial resolution,

higher robustness, uniform coverage, and ease of deployment, anywhere and anytime

with reduced energy consumption [5]. These inexpensive sensors are lower in cost when

compared to microprocessor systems, which is due to advancements in technology that

have permitted the manufacture of such low cost motes.

As mentioned above, the small sensor motes achieve higher spatial resolution, in

comparison to complex microprocessor systems within a similar-sized geographical area,

because the sensing of the environment is done by a large number of motes instead of just

one. Appropriate algorithms at the receiver use correlation across the received data to

enhance the received signal and output more accurate reading/results. Higher robustness

is achieved by dense deployment of the motes in a geographical area where a number of

nodes may fail but the sensor system is still able to read and transmit acceptable

information. This is another advantage over a single microprocessor system, which if it

fails it will cause the loss of its functionality in a given area. Also, uniform coverage can

6

easily be achieved with the appropriate distribution of the sensors in the area of interest,

in comparison to the single microprocessor sensor, where it is limited to placement in the

center of the interest area. One final advantage of the lower cost system is that it can be

placed anywhere and anytime since it does not require human attention or the need of

physical presence in the area of interest, which can be hazardous or unreachable. The

system can be distributed by airborne vehicles, such as airplanes or helicopters [5].

The uniqueness of an unattended wireless sensor network is that since human

presence is not necessary the system can automatically perform node setup and network

boot-up. The network must be able to make dynamic adjustments in order to be able to

handle the changes in the environment and to itself. That means it should also be able to

optimize its functioning, be able to fine tune work flow to achieve predetermined goals

and be able to recover from routine or extraordinary events that might cause it to

malfunction. The network must also have the capability to discover problems, such as

uncovered areas due to mote(s) malfunctions and to find alternate resources and routes to

keep it functioning properly and smoothly. Finally, it must detect, identify and protect

itself against various types of attacks in order to maintain overall system security and

integrity.

This thesis will build tools and create profiles that can be used by the network

administrator, to gather and monitor the traffic of an unattended wireless sensor network

and identify the various attacks as mentioned in the paragraph above.

A. APPLICATIONS
This paragraph will provide, in more detail than in the introduction, some

applications areas of the wireless sensor networks, used today, as well as some

experimental projects that have not been utilized yet but most likely will be seen in the

near future.

1. Military Applications
Wireless Sensor Networks (WSN) are becoming a very important part of the

military command, control, communications, computing, intelligence, surveillance,

reconnaissance and targeting systems. In the battlefield, the tendency of the targets is

that they will become smaller and less detectable, and that they will have higher mobility

and the ability to move in any kind of terrain and environment [5], [7]. It seems that a

7

WSN deployed in high density environment where the potential target is or is expected to

be proven an excellent source of information for the detection of the hostile forces,

remote sensing of the release of nuclear, biological and chemical weapons, and in a

variety of other remote sensing operations. Also, commanders can monitor the status and

location of their troops, weapons and supplies in order to improve military command,

control and communications [5], [7] as well as smart minefields that can sense the

intruders and react appropriately.

2. Environmental Detection and Monitoring
The spread of tiny, inexpensive motes in a wide geographical area can be used for

many types of applications such as flood detection, air and sewage monitoring, climate

control in very large buildings, soil composition in agriculture, forest fire detection, and

geophysical studies as well as to survey the plant and animal population.

Also, appropriate sensors can be used for crop and livestock monitoring and

management in a very large agricultural area, where physical monitoring is mandatory

but time consuming, or sometimes inaccessible. In such situations, with the deployment

of the appropriate sensor network, soil and plant elements can be monitored, and based

on the resultant readings the fertilizer concentration needed can be calculated with

accuracy and in real time.

In the field of the seismic activity detection, a WSN that consists of

accelerometers can provide a much finer scale than having a single sensor for a very large

area since motes can be deployed with a very high density within the same area of

interest.

Also, wireless sensor networks can assist in the monitoring of fresh water quality

in a remote area where sampling is difficult, or even impossible. Several sensors can

sample and analyze the water, and then transmit the results accordingly.

Finally, in the area of disaster detection and prevention, such as forest fires and

floods, a deployed wireless sensor network can monitor temperature and water levels, and

thus provide an early warning [5], [7].

8

3. Civil Engineering and Home Intelligence
Monitoring of structures like bridges in order to detect and to warn of structural

weakness, or the reaction of tall buildings to wind and earthquakes are some of the civil

engineering applications of WSNs [5], [7].

In the area of home intelligence, WSN applications can provide smoke detection

in order to prevent fires and their spread; automate the reading of gas, water and

electricity reading/levels; and facilitate safety monitoring through remote surveillance to

detect intruders.

4. Health Monitoring
WSNs can record physiological data, such as body temperature, blood pressure,

pulse and other readings, which can be sensed and transmitted automatically to a

physician or doctor. In the same manner additional sensors can analyze the blood stream

periodically and provide 24-hour coverage of personal health [5], [7].

Remote virus monitoring can be performed in an area that has been infected, and

it is not yet safe to humans. These readings can be used by a virus control center in order

to determine the spread of the virus and to assist in making decisions, such as when to

send appropriate medical support.

B. ELEMENTS OF WIRELESS SENSOR NETWORKS
Wireless Sensor Networks consist of ten to thousands of ultra-small fully

autonomous computing and communicating devices with very restricted energy and

computing capabilities. These devices cooperate to quickly and efficiently accomplish a

large sensing task in a remote area where no cabling is present or human presence is

restricted due to several conditions [5].

As illustrated in Figure 1 below, a “Sensor Node” consists of two basic

components: a sensor and a mote. The sensor part can be defined as the component that

is able to detect/sense physical phenomena such as heat, light, sound, acoustic pressure,

acceleration and vibration, and it is usually a cluster of sensors placed on a board. The

sensor then transforms the readings into an electrical signal and transmits it to the

processor, which is usually on the same board, for further processing [1]. These devices

will be better detailed, examined and presented in the next chapter where an analysis of

9

the sensors used for the experiment is provided. The mote component consists of a

microcontroller with a sensor application and networking software, a low power radio

transceiver and a power component which can be either a battery or a solar plate [1].

Figure 1. Basic elements of a Wireless Sensor Network (From Ref. 1).

C. TECHNOLOGY COMPONENT EVOLUTION

The evolution of each of the elements of a wireless sensor network has enabled

us today to be able to manufacture very small motes, that are able to perform many

tasks and to be deployed almost anywhere having the ability to be self-managed, self-

organized, self-healing and self-diagnostic [5]. These technologies can be broken down

into three major categories: digital circuitry, wireless communications, and

microelectromechanical systems (MEMS).

It was not long ago when the first computers were quite large in size especially in

comparison to the size of a human, as can be seen starting from upper left corner of

10

pictures in Figure 2 and moving towards the lower right corner [1]. These sizable pieces

of machinery used to occupy an entire room. Today extensive advancement in technology

has enabled the manufacture of Personal Computers (PC) that can fit on a small desk,

laptops which are easily transportable in small bags, PDA’s – which are also known as

Palm Pilots because of their size – to fit in one’s hand, and motes that are equivalent to

the size a coin, if not smaller.

Figure 2. Illustration of decreasing in size of computational devises vs. time (From Ref.

1).

Figure 3 demonstrates the size of tiny motes in comparison to a penny [8].

Figure 3. Solar powered, bi-directional communications & sensing (acceleration,

ambient light) (From Ref. 8).

11

1. Digital Circuitry
With digital circuitry discovery and evolution [5], electronic devices have become

extremely fast enabling them to perform millions of operations per second; tasks that

would have taken humans years and years of effort, all the while performed with no

mistakes. But not only the calculation power has increased dramatically - and of course it

will continue to increase - the size of the circuit required became extremely small. Today

there are devices that are built much larger than they need to be so that humans can hold

them in their hand to operate them.

2. Wireless Communications
The evolution in wireless communications using MEMS that is briefly described

in the next paragraph assisted in the manufacture of very small transmitters and receivers.

The use of different and multiple coding schemes permitted an increase in the rate of

transmitted data within the same bandwidth, as well as the energy per single bit that is

transmitted.

Table 1 shown below, gives a good illustration of how the motes have been

reduced in size, as well as some other characteristics like weight, topology and power

supply modules from the different vendors. The illustration includes information from as

early as 1980, what we have today and peaks into the future to show what is expected in

the year 2010.

12

Table 1. Chronological evolution of motes from different vendors in terms of size,
weight, power supply, topology, deployment methods. (From Ref. 1)

3. Microelectromechanical Systems (MEMS)
Micro-Electro-Mechanical Systems (MEMS) are the integration of mechanical

elements, sensors, actuators and electronics on a common silicon, polymer or metal [7]

substrate through microfabrication technology [8], [9], [10].

13

While the electronics are fabricated using integrated circuit (IC) process

sequences (e.g., CMOS, Bipolar, or BICMOS processes), the micromechanical

components are fabricated using compatible "micromachining" processes that selectively

etch away parts of the silicon wafer or add new structural layers to form the mechanical

and electromechanical devices [8], [9], [10] .

MEMS bring together silicon-based microelectronics with micromachining

technology, making it possible to have a complete systems-on-a-chip. MEMS is an

enabling technology allowing the development of smart products, augmenting the

computational ability of microelectronics with the perception and control capabilities of

microsensors and microactuators, and expanding the space of possible designs and

applications [8], [9], [10].

Microelectronic integrated circuits can be thought of as the "brains" of a system

and MEMS augments this decision-making capability with "eyes" and "arms,” to allow

microsystems to sense and control the environment. Sensors gather information from the

environment through measuring mechanical, thermal, biological, chemical, optical and

magnetic phenomena. The electronics then process the information derived from the

sensors, and through some decision making capability, direct the actuators to respond by

moving, positioning, regulating, pumping and filtering, thereby controlling the

environment for some desired outcome or purpose. Because MEMS devices are

manufactured using batch fabrication techniques similar to those used for integrated

circuits, unprecedented levels of functionality, reliability and sophistication can be placed

on a small silicon chip at a relatively low cost [8], [9], [10].

Figure 4 illustrates how small these devices can be by comparing a gear set which

is produced using MEMS to a mite [8].

14

Figure 4. Gear set produced using MEMS compared with a mite (From Ref. 8).

D. SUMMARY

The multiple advantages of a wireless sensor network consisting of small and

inexpensive motes versus a similar network consisting of micromotes was discussed at

the beginning of this chapter, and it was explained why the wireless sensor network are

more reliable and effective. Also the different existing applications that draw on this

evolution, such as military, environmental, home intelligence, agricultural, and health

monitoring have been briefly mentioned. Three different technologies that contributed to

wireless sensor network development, digital circuitry, wireless communication and

MEMS, were discussed and all together laid the necessary background to introduce the

specific motes used in Chapter III.

15

III. SENSOR MOTE TYPES

This chapter will provide a brief introduction to the hardware used in this thesis as

well as the layout and setup of a wireless sensor network. In this network, three

Crossbow Micaz motes along with a base programmer and station which consisted of one

Crossbow MIB510 and a Micaz attached to a desktop PC. The above components created

the wireless sensor network from which traffic was captured and categorized based on the

active message packet type into three major categories: routing, data and broadcast. The

sniffing device used to capture the traffic was a Crossbow TelosB mote attached to a

notebook computer. This arrangement provided mobility and allowed the packet sniffer’s

distance and position to be changed in relation to the WSN.

A. MOTE TYPES AND DESCRIPTION

1. Micaz mote
Figure 5 shows the basic components of a Micaz mote along with the circuitry

layout. The mote consists of an Atmel ATMega128L microprocessor, a Chipcon CC2420

radio and antenna, external flash memory, a 64-bit Serial ID, a 51-pin connector, power

connectors and indicator LEDs [1].

Figure 5. Micaz hardware description (From Ref. 1).

Table 2 provides some performance characteristics of the Micaz mote as

mentioned in the paragraph above [1].

16

Micaz Platform

Microprocessor: Amtel ATMega128L Memory: 128Kb of flash
 4Kb of SRAM

Radio: Cripcon CC2420 Radio: 250Kbps data rate
Encoding: DSSS
Modulation: O-QPSK
Distance: Up to 135m, LOS, 1/2 wave dipole antenna
Freq: 2400-2483Mhz

External Serial Flash Memory 512 Kb
51-pin expansion connector Eight 10-bit analog I/O

21 general purpose digital I/O
Power options/Energy consuption 2 AA cells, through 51-pin or 2-pin Molex

Energy usage:1.8V x (5-10) μA
Energy sleep:1.8V x 1 μA

Table 2. Micaz performance characteristics. (From Ref. 1)

2. Telos Rev B Mote
Figure 6 illustrates the TelosB mote; where as described above, some of the

differences from the Micaz mote are exhibited. The TelosB mote connects to a PC

through a USB port/adapter, has a different microprocessor (MSP430) and a 6-10 pin

connector [1].

Figure 6. TelosB hardware description (From Ref. 1).

Table 3 provides the basic performance characteristics of the Telos rev B mote

that has been used as a receiver for capturing the 802.15.4 traffic [1].

17

Table 3. TelosB performance characteristics. (From Ref. 1)

3. MIB 510 Programming Platform
In order to be able to program the motes with the desired application and to be

able to make changes to their power settings, group ID’s, mote ID, and any changes that

are needed to be uploaded to the motes, a programmer board is needed.

In Figure 7, a block diagram of the MIB510 programming board is laid out. It has

an RS-232 port, which is the programming communication link to a PC or any other

external device that holds the application programs that are needed to be uploaded in

order to operate the mote. The MIB 510 has an on-board in-system processor (ISP), an

Altemma 16L, which actually programs the mote as follows: the application code is

downloaded to the ISP via the RS232 port, while the latter continually monitors/listens to

the incoming serial packets. It should also be mentioned that the MIB 510 facilitates the

power needs for the mote that it is attached to and TinyOS has to be installed on the PC

in order to program the motes [1] (a detailed description of a TinyOS can be found in

Chapter V.

TelosB Platform
Microprocessor: TI MSP430F1611 Memory: 48Kb of flash

 10Kb of SRAM

Radio: Cripcon CC2420 Radio: 250Kbps data rate
Encoding: DSSS
Modulation: O-QPSK
Distance: Up to 125m, LOS W/PCB inverted ‘F’ antenna
Freq: 2400-2483Mhz

External Serial Flash Memory 1024 Kb
16-pin expansion connector
Power options/Energy consuption 2 AA cells

USB
Energy usage:1.8V x (5-10) μA
Energy sleep:1.8V x 1 μA

18

Figure 7. MIB510 Serial Interface Programming board (From Ref. 1).

4. MTS 310 Multipurpose Sensor Board
The sensor board that was used in this experiment was the MTS 310. As shown

in Figure 8, this sensor board consists of a cluster of six sensors that are briefly described

in the following paragraphs:

a. Microphone and Tone Detector
This can be used for acoustic ranging and acoustic recording and

measurement. It consists of a pre-amplifier and a second stage amplification achieved

with a digital pot control.

b. Temperature Detector (Panasonic ERT-J1VR103J)
A light detector based on a CdSe photocell with maximum sensitivity at

the light wavelength of 690 nm.

c. Two-axis Accelerometer (ADI ADXL202)
A MEMS surfaced micro-machine that is used for tilt detection,

movement and vibration. It has a g measurement range of 2± g (1g = 9.81m/sec) and a

resolution of 2 mg.

d. Two-axis Magnetometer (HMC1002)
A silicon sensor that consists of a very sensitive NiFe coating. It causes

the bridge resistance to change when the magnetic magnitude is altered. It can detect

moving objects like automobiles at a radius of 15 feet.

e. Sounder
This device is a 4 kHz piezoelectric resonator.

19

Figure 8. MTS 310 Multipurpose sensor board (From Ref. 1).

B. EXPERIMENT LAYOUT

In order to record the measurements for this experiment, the following

deployment and devices were used, as mentioned above and illustrated in Figure 9.

As shown for the traffic capturing purposes a laptop with a TelosB directly

attached was used, a configuration that provided mobility. The Wireless Sensor Network

consisted of a base station − a MIB510 programming board with a Micaz mote attached

on top base station and two additional Micaz’s with MTS 310 sensor boards attached on

top and powered by two AA batteries.

Figure 9. Experiment layout with a base station on the top right.

The two motes in Figure 9, where initially close to the base and had direct

communication with it. Then they were purposely set at a greater distance from each

Node 2 Node 1

Base MIB510/micaz

Laptop with
TelosB
Packet Sniffer

TelosB as
Packet Sniffer

20

other and from the base in order to force them to create a multi-hop relationship of

parent-child. This arrangement brought about the need for routing decisions to be made,

and in consequence, the generation of routing traffic. This means that Node 2 was child

to Node 1, and the latter transmitted the aggregated data to the base. The data was

received at the base solely from Node 1. Finally, the relative position and distance of the

laptop was changed, which held the packet capturing device, to test the effect of the

movement of the elements above for the quality of the packet capturing.

C. SUMMARY
In this chapter, the two different configurations where traffic was intercepted were

introduced, along with the criteria on how they were divided into two major categories;

depending on the communication properties. Those were direct and parent-child

scenarios. The first one identifies the communication scheme, where both motes were

directly exchanging data with the base station, while in the second scenario Node 1 relays

all the packet exchange from Node 2 to the base. Continuing with the description of this

sensor network, it was explained how the network is divided into two basic components:

sensor motes and the base station. The sensor motes used were Micaz with a XMT310

sensor board, from Crossbow technologies Inc. Their basic specifications and capabilities

were listed in Table 2 and Figure 5. Next, Table 3 listed the basic specifications for

TelosB motes, which were used as the hardware part for the packet sniffer.

The following chapter provides an in-depth analysis of the Physical (PHY) and

Medium Access Control (MAC) packet formats and their content, and a brief description

of TinyOS and the IEEE 802.15.4 protocol stacks.

21

IV. SENSOR NETWORK TRAFFIC TYPES

In this chapter, a brief description of the IEEE 802.15.4 standard, TinyOS

operating system and some protocols is presented, which will facilitate the analysis of the

different types of traffic produced in a WSN.

A. 802.15.4 AND ZIGBEE ARCHITECTURE
Figure 10 illustrates, according to the OSI model layer stack, the architecture of

IEEE 802.15.4 and Zigbee Alliance. Starting from the bottom layer and moving up, we

have the Physical Layer followed by the Medium Access Control Layer, which are

standardized by the IEEE 802.15.4 Working Group. The Data Link, Network and

Application layers are defined by the Zigbee Alliance. On the top of the layer stack is the

Application Layer, which can be developed by different vendors, so it can support any

application’s needs [1].

Figure 10. IEEE 802.15.4 and Zigbee Layer Architecture (From Ref. 1).

In this thesis, the layers that will be discussed are the Physical and Medium

Access Control, since they contain all the information needed to categorize the traffic.

Here it is important to mention, that those two layers are defined by IEEE 802.15.4, and a

vendor or developer builds a package for the upper layers - Data Link to Application

layer - which actually handle the manipulation of the two lower layers. If extra

functionality and improvements are required to specific applications, they are facilitated

with changes and modifications to the five higher layers.

22

The coexistence of the TinyOS and Xmesh sharing the same Physical and

Medium Access Control layers is shown in Figure 11. Here on top of the PHY and MAC

layers, two different layer stacks arise, as well as an interconnection bridge that facilitates

the interconnection and communication between those two protocols suites [1].

Figure 11. Xmesh and Zigbee protocol layering share the same MAC and PHY lower

layer (From Ref. 1).

A description of the PHY and MAC layers within the Tiny MicroThreading

Operating System (TinyOS) is addressed in the following paragraphs. It is shown that the

Active Message type used by Xmesh in TinyOS is very similar to the TCP port. Different

Active Message types imply different network services, and so different types of traffic.

The Crossbow Micaz and TelosB motes use the TinyOS research platform as a

small operating system. From the Crossbow website [11]:

TinyOS is an open-source operating system designed for wireless
embedded sensor networks. It features a component-based architecture
which enables rapid innovation and implementation while minimizing
code size as required by the severe memory constraints inherent in sensor
networks. TinyOS's component library includes network protocols,
distributed services, sensor drivers, and data acquisition tools – all of
which can be used as-is or be further refined for a custom application.
TinyOS's event-driven execution model enables fine-grained power
management yet allows the scheduling flexibility made necessary by the
unpredictable nature of wireless communication and physical world
interfaces.

23

B. TINYOS/XMESH PACKET STRUCTURE AND ANALYSIS

The information exchange between nodes and the base station is achieved with

transmission of many small-sized packets. Figure 12 illustrates the format of one packet

and its different fields. The process that takes place before a packet transmission, in

respect to the lower layer (physical layer) is as follows: there is a delay up to 15 packet

lengths of time, where a packet time equals the time needed for a packet to be

transmitted. Next a delay of 250ms is followed by a preamble, which helps the receiver to

synchronize it’s timer to the incoming data. The preamble ends with the Sync

(synchronization) portion of the packet that informs the receiver it should be receiving

the packet. The actual packet data follows which is 36 bytes in length for the Mica2 (41

for the Micaz) [1].

Figure 12. TinyOS Physical Message Packet (From Ref. 1).

The green portion of the packet in Figure 12 maps to the TinyOS packet, which is

the Medium Access Control (MAC) layer packet before it is encapsulated into the

physical layer. It is divided into three parts and has total length of 41 bytes (for the

Micaz), but it can be extended if needed up to 125 bytes (125 bytes long is supported by

IEEE 802.15.4) [1].

So starting with the first TinyOS section, the header has a length of 10 bytes and

is further divided as follows. The first subdivision of the header section of the TinyOS

packet structure is the Payload Length which has one byte of information and identifies

the length of the payload carried in this packet. The Frame Control follows with two

bytes and next is the Sequence Number which is one byte. The Sequence Number is used

24

to discard packets that have already been received and so protects from replay attacks. If

a packet is captured and replayed afterwards the sequence number would have been

already used and the packet is discarded. The Destination PAN ID has two bytes and it is

the 16-bit address of the mote. This is manually programmed to each mote, and ranges

from 01 to 65000 with node address 0 usually reserved for the base. The Origin Address

occupies two bytes and it stands for the sender address. Next, the TOS AM Type

(highlighted in Figure 13 in green) uses one byte, and as has been explained already,

provides the information regarding to the type of the packet, and will be used as one of

the criteria to categorize the traffic type. Finally, the last field in the header section is the

TOS Group ID which is similar to the network address of a group of motes, assigned to a

cluster of motes performing a specific task. This allows the use of the same radio channel

by several different groups of motes. In the case where a mote receives a packet with

Group ID that does not much its own, it discards the packet [1].

The next section of the TinyOS packet is the payload that can hold up to 29 bytes

of user or application data and the last section is the Cyclic Redundancy Check (CRC)

that has two bytes and is used to check for bit errors [1].

Payload
Length
(1 byte)

Frame
Control
(2 bytes)

Sequence
Number
 (1byte)

Destination
ID

(2 bytes)

Origin
Address
(2 bytes)

AM Type
(1 byte)

Group ID
(1 byte)

Header (10) Payload (29) CRC (2)

Figure 13. TinyOS Packet Structure (From Ref. 1).

Upon collection of the data to be transmitted, the TinyOS operating system

running the Xmesh application takes the following message flow: Data or other

information fills the message payload portion of the packet and then it is passed down the

stack where the address of the next single hop destination is added. Continuing, the

Active Message Type is specified. The complete packet with the format and additional

25

information as illustrated in Figure 13 is handed to the transmitting radio device, where it

is delayed for up to 15 packet times (each packet time is about 4msec). Then a check to

determine if the channel is clear is performed, where the channel access mechanism used

is Carrier Sense Multiple Access Collision Avoidance (CSMA/CA). If the channel is free

transmission occurs [1].

Now while in reception, the radio device upon the detection of the MAC header

interrupts transmission, and reads the packet coming through the First In First Out (FIFO)

buffer. Next verification that the sequence number received by the specific mote is

correct occurs and if so the mote proceeds to read of the Group ID. If the group ID does

not match, the packet is discarded. If the Group ID is correct the Active Message field is

examined and depending on the AM type it is handed to the specific application [1].

A list with the Active Message Types and associated applications is shown in

Table 4. In this experiment the AM numbers 3, 51, 246, and 250 where observed from the

WSN while running Xmesh and the XMT310 applications. These AM numbers differ

from application to application, and from vendor to vendor. For the Crossbow hardware

and software components, as mentioned above, the AM 3 corresponds to Health packets

from motes to the base, AM 51 corresponds to the environmental sensor measurements

sensed from each mote (XMT 310 application), AM 250 is routing information packets,

and AM 246 is an acknowledgement packet from base to the nodes [12].

26

Table 4. Identification Number for Active Message Types (From Ref. 12)

Once the motes are deployed and powered they initiate transmissions to the all

broadcast address, trying to enter any network which they have not joined. Upon

reception of the route update message from the mote, the base station also transmits a

route update message, and informs the mote that the base station is there and is able to

hear the mote. The same message then goes from the mote to the base. Upon the

reception of the last message, the mote and base have established communication and

exchanged all the other information needed to start passing data. In the case that the base

27

is out of the radio coverage area of the mote, the same kinds of messages are exchanged

between the mote and another mote which might be within radio distance [11]. In that

case each mote listens to its neighbor and uses this information to populate a routing table

of up to 16 neighbors (except for the base which builds a routing table of 40 neighbors).

This relationship, which serves the relay of traffic between motes to the base, is called the

parent-child relation. This decision considers which neighbor requires less energy to send

the traffic to, and the minimum number of hops to the base. The maximum number of

children assigned to a mote is 50 and it can go up to 100 for the base. Typically the

interval of the Route Update Message, which as mentioned above has AM 250, is 360

seconds for low power consuming transmission, and 36 seconds for high power. If no

Route Update Message is received within a defined interval the mote will reboot [10].

The Route Update Messages (RUM) contains 4 basic information fields. The first

information field contains the Parent ID number, or if the node has not joined the mesh

network yet a 0xfff (broadcast) is transmitted. The second field is used for the cost that is

needed to send a message to the base, followed by the number of hops necessary to reach

the base. Finally in the last field is a list of the five most qualified neighbors as mentioned

in the paragraphs above. Since each node keeps a routing table of 16 neighbors, 4 RUM

messages of sequential counting are required to be sent [12].

The next type of packet observed in this experiment is the Health packet. There

are two types of Health packets, the Statistics Health packet and the Neighbor Health

packet. These are transmitted in an alternative fashion on every health update interval and

have the same packet format [12]. The Active Message number ID for these is AM 3.

The health packets include statistical information about the packets being sent by

this mote, like number of packets transmitted, number of dropped packets and number of

retransmissions. They also contain power information such as voltage readings and

accumulated power usage. Finally, they include information about parent node ID, link

quality and path cost. Neighbor health packets contain information about the mote’s

neighbors and the link quality to these nodes, which is estimated by monitoring the

number multihop headers and processing this with an exponentially-weighted moving

average algorithm [12].

28

There are two kinds of packet acknowledgements, the link level

acknowledgement and the end-to-end. Data packets use the link level acknowledgement

which requires retransmission between a sender and receiver until an acknowledgement

is being received by the sender. Systems and application that require energy efficiency

but not 100% delivery of data should use it. End-to-end acknowledgement packets are

used by the health packets. In this case the base must receive and acknowledge the

originator mote [12].

Table 5 summarizes the properties listed above for different kinds of messages as

well as the differences between the base station and the rest of the motes.

Parameter Default Value Description Summary
Data length 29 Bytes Maximum data for a TOS packet. It can be

change with appropriate applications.
Base Station Address 0 Node ID (or address) for base station. Should

never been changed
Route Update Interval 60 sec for High Power

600 sec for Low Power
Time Between health messages

Descendant Table Size Base : 100
Motes : 50

Defines the maximum number of children to a
mote.

Data Message Rate 10 sec High Power
180 sec Low Power

Defines the transmission time interval for the
data messages.

Route Table Size Base : 30
Motes : 15

Defines maximum Number of neighbors that a
mote can track. A mote that is not listed here
can not be selected as a Parent node.

Queue Size Base : 16
Motes : 8

Define maximum number of messages that can
be queued. Once exceeded packets will be
dropped.

Table 5. Summary of the Base and Motes messages properties and differences

C. SUMMARY

In this chapter the MAC packet is parsed down into the elements that are used, in

Chapter VI for traffic categorization. Through this process, it was illustrated that the

MAC packet for the Micaz motes is 41 bytes in length, with a header of 10 bytes. The

latter field included the following information: destination and originating addresses,

group ID, active message index, and application information. Next, it was explained how

different types of active message indices can identify different kinds of packet types, like

routing, data, health and acknowledgement. Table 4 illustrated some of the possible

active message types that can be found in the applications of the motes used in this thesis.

Finally the properties and format of the routing, data, health and acknowledgement

29

packets are explained, since those were seen in this thesis. An example on how each of

these is seen from the output of the packet sniffer follows in the next chapter as well as

how the initial packet sniffer program was altered to serve these needs.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

V. TRAFFIC CAPTURE SNIFFER DESIGN

As introduced and analyzed in Chapter IV, the scope of this thesis is to categorize

the traffic, mainly according to the AM number ID contained in each packet exchanged

within the WSN. Other data, such as payload data length, number of packets, interarrival

time, and different AM type and node type, are also going to be used to extract statistical

information and build a database with behavior patterns for a specific location,

environment and number of motes. In order to facilitate this need, an existing packet

sniffer [4] was used which was written initially by Hong-Siang Teo and was modified to

meet the needs of this thesis.

This sniffer was modified with the addition of several java programs (classes)

named activeMessage.java, displayWindow.java and outputtoCsv.java respectively as

well several code lines in the Sniffer class. Descriptions of these three classes as well as

their functionality will be presented in the following paragraphs in this chapter, and the

source code is included in Appendix A.

A. SNIFFER ANATOMY
The packet sniffer consists of hardware and software components. The hardware

components were discussed in Chapter III, so no further description is needed. In Figure

14 a block diagram of the packet sniffer is illustrated. From the left to right, we can see

the WSN, which for this experiment consisted of three Micaz’s, whose traffic was

captured using a TelosB mote as the packet sniffer hardware. The TelosB has been

“flashed” (programmed) with TransparentBase. TransparentBase is a TinyOS application

located under apps directory within Tinyos-1.x directory. The complete path is

tinyos/cygwin/opt/tinyos-1.x/apps/TransparentBase. This application captures all the

packets that it can hear and reports them back to the UART. It also forward’s all

incoming UART messages out to the radio [13]. It is also a bidirectional bridge between

the radio of the TelosB and the serial port, which has the ability to ignore the group ID

and AM type and forward all packets to the PC (so all packets from all WSN in range

will be captured with no limitation to tune the sniffer to a known group ID).

32

Within the PC the Serial Forwarder application instantiates a server which

provides a bi-directional packet stream between a mote connected to the host PC and

clients anywhere on the network [14]. SerialForwarder is located in

tinyos/cygwin/opt/tinyos-1.x/tools/java/net/tinyos/sf directory, and it basically allows the

communication of the application through a network interface rather than a serial

interface. Some operating instructions and settings, which are required for the normal

operation for the Serial Forwarder, are described in Appendix B.

The last component of the packet sniffer is the java application Sniffer which

extracts the information delivered by SerialForwarder, such as protocol and application

information, and outputs this in a form which enables and allows further processing and

analysis [4]. This is where this thesis has added three different java applications in order

to facilitate the traffic categorization.

Figure 14. Sniffer application block diagram.

Wireless
Sensor
Network TelosB

Packet
Sniffer

PC

Serial
Forwarder

Sniffer.java

displayOutput.java outputtoCsv.java

activeMessage.java

33

B. DESCRIPTION OF JAVA CLASSES

The activeMessage.java is a program that uses the java tool

java.util.StringTokenizer and allows the programmer to parse the elements of a larger

string, such as the incoming TinyOS MAC packet, into as small elements as are needed.

Incoming packets had the following structure: 17:07:46.781 TOS 125.65535.51 (27)

[010001001200ff8481ffffae01cd014f03a001010001001c031c03]. Comparing this to the

TinyOS MAC packet format and with the use of reverse engineering, an identification of

each part was achieved.

The packet output started with the time stamp, which in this example was

17:07:46.781, which was assigned the string name packetTime by the activeMessage

program. The next part is the string “TOS,” which was used to display the protocol

information (TOS is an abbreviation for TinyOS) and was not needed for this experiment.

This was followed by 125.65535.51. Those numbers were parsed down to three

additional parts as follows: “125” corresponds to the Group ID and was given the string

name packetGroupID, “65535” was the destination address (in this case broadcast) with

the assigned string name packetDestination and finally “51” was the active message

number with string name packetAM. Next followed “(27)” where the number within the

parentheses corresponded to the payload length. It was assigned to the string name

numberofBytes. The packet ended with the data portion where only the originating

address was determined which corresponded to the first 5 digits within the bracketed

string. In this example “[01000” was assigned to the string name PacketNoteID. Note

here that comparing the received information to the packet format we expected to see, the

last part, which is the Cyclic Redundancy Check (CRC), is missing. The later was not

needed for the traffic profiling, so no further investigation of this part was conducted.

The output of the activeMessage java program was then given to the outputtoCsv

and displayWindow programs for further processing. The outputtoCsv exports the above

output to a CSV file, with values separated by commas, so it can be imported to an Excel

spreadsheet for further analysis. There are two settings that the user might be required to

change depending on user preferences. These are where this file should be stored and

how many lines, which is equivalent to the number of packets, should be saved in each

34

CSV file. Starting from the latest, Excel spreadsheets have a limitation of 65535 lines so

this program is configured to open a new CSV file every 60000 packets (or lines).

The following code, which also listed in Appendix A paragraph B, points to the

fields that the user can change depending of the number of packets the user might want to

input into a file as well location that the files should be stored.

String Filename="complete path where user wants to save the files";
 public void printTraffic (String packetGroupID, String
packetDestination,String packetAM,String packetAM,String packetNodeID, String
numberofBytes)
 {
 count ++;
 if (count == value of number of lines before opening new file)
 {
 Filename+="1";
 }
 File cvs = new File (Filename);

A good common practice, considering the purpose of this program, will be to set

this value to 1000 packets or less, in order to run an analysis of the input traffic in short

time intervals and determine any discrepancies that might have occurred. This topic will

be addressed in more detail in Chapters VI and VII.

The outputtoCsv java class opens a GUI window to enable the user to have a real

time display of the incoming packets. In this program layout, where the WSN consisted

of only few motes, the interarrival time of the packets was about 0.19 seconds and the

user was able to observe any anomalies in the traffic. This is not realistic because in

reality the WSN will consist of a minimum of hundreds of motes and the interarrival time

will drop tremendously.

C. OUTPUT
Figures 15 and 16 illustrate the displayWindow Graphical User Interface (GUI)

and the CSV file format, respectively. Starting from Figure 15 we can see that this

window is labeled “Traffic Categorization” and displays six columns which are

respectively: GroupID, Destination (address), AM (active message number), Time, Node

ID (originating Node ID number), and finally Number of Bytes.

35

Figure 15. Illustration of the displayWindow java program; a GUI for traffic monitoring

The CSV file format is illustrated in Figure 16 and has the same elements as in the

displayWindow GUI.

Figure 16. Illustration of the CSV file format

36

D. SUMMARY

A brief description of Hong-Siang Teo’s packet sniffer for TinyOS [17]

compatible motes was discussed followed by a detailed description of the functionality

and properties of the three java programs that were added by this thesis. It was explained

that the activeMessage.java program is used to parse the incoming packets, and then is

passed to displayWindow.java and outputtoCsv.java programs, where the first one served

the real time visualization of the MAC header information, and the latter the output in a

suitable format of a CSV file. As explained, the CSV format is easy to be exported to an

Excel spreadsheet, which is very convenient for further analysis.

In the following chapter, it is shown how this packet information was grouped and

categorized according to the Active Message type into four different categories, and what

traffic profiles and patterns were discovered. Those patterns qualify a normal traffic

behavior, which can be used to identify variations and anomalies when such network is

under attack.

37

VI. TRAFFIC CATEGORIZATION FRAMEWORK

In Chapters IV and V, the hardware and software components of a packet capturer

for a sensor network consisting of Crossbow Micaz motes was fully explained and

analyzed. This packet capturer can be considered and used as the sensor component of a

possible Intrusion Detection System (IDS), for a TinyOS network. In this chapter, the

traffic of three motes in two different topologies, as described in Chapter III, will be

captured, stored and analyzed in detail to provide a baseline for normal network

behavior.

There are several different kinds of Intrusion Detection Systems (IDS), depending

on the network and the location of the sensor. These are summarized as follows: network

intrusion detection systems, protocol-based IDS, application protocol-based IDS, host-

based IDS and finally hybrid IDS which is actually a combination or two or more of the

above approaches [15].

This thesis examines a network IDS. There are two kinds of network IDS

depending on the detection method – signature-based and anomaly-based. The signature-

based IDS compares the network traffic to known attack patterns, and is supposed to

detect all known attacks. An anomaly-based IDS, like the one developed in this thesis,

scans the network traffic and analyzes it according to baselines and patterns of normal

traffic behavior. The major advantage of this approach is that it can detect attacks that are

not yet known, but it is subject to false alarms when the baselines are not accurate or

when the administrator has assigned too narrow a deviation. Usually an IDS is composed

of the following four parts: event generators (E-boxes), event analyzers (A-boxes), event

databases (D-boxes), and finally response units (R-boxes) [15].

An event generator is the device that captures the traffic, incoming and outgoing,

and then passes it to the other IDS components. The event analyzers process and analyze

the data that is coming from the event generator, and create traffic profiles and traffic

behaviors. The event databases simple store the data from the two previous mentioned

components, so the system administrators can access it anytime. The last component is

38

the response unit, which provides countermeasures when network intrusion is detected.

For this thesis, the event generator component is the TelosB mote programmed with the

TransparentBase application.

Following the IDS component model introduced in the paragraphs above, the

event analyzer follows and in this thesis can be mapped to the laptop on which the

TelosB was attached. The applications that were necessary to perform the analysis and

the statistical profiling of the incoming data are Sniffer and TinyOS. The incoming data

was forwarded from the TelosB to Sniffer through Serial Forwarder. The

displayWindow.java program provided a graphical User Interface for monitoring the

traffic, and parallel the needed packet information were written into a CSV file with

outputtoCsv.java. The statistical analysis was then performed offline, by importing the

CSV to an Excel spreadsheet. All data was saved on the hard drive of the laptop which

can be considered the event database, and finally no response unit component was

developed.

In the following paragraphs, the statistics of two cases are illustrated as well as

basic behavior patterns. Section A refers to the layout where two Micaz motes are

directly communicating to the base node, while in Section B Node1 relays all traffic from

Node 2 to base, as well as its own traffic.

A. TRAFFIC STATISTICS

1. Direct Motes to Base Connection
In this first part, a total of 15,703 packets where captured in a time period of three

hours and five minutes. The distance between the motes and the base was four meters and

between motes two meters. The whole experiment took place within a room, and the

motes where not moved.

In Figure 17, the percentage of the traffic according to the active message type is

illustrated. Of the 15,703 packets, 13.07% was with AM 3 corresponding to health type

packets. Next, 70.97% of the traffic contained data packets, with AM 51. The last two

types observed were acknowledgement packets with an AM 246, which were taking

10.09% of the total traffic, while the route update packets with AM 250 where found to

be 5.85% of the traffic.

39

Traffic Percentage

0
10
20
30
40
50
60
70
80

Active Message

P
er

ce
nt

ag
e

Series1

Series1 13.07393492 70.97369929 10.0999809 5.852384895

1 2 3 4

Figure 17. Traffic percentage statistics in accordance to Active Message type.

Continuing with the traffic profiling, the packets where grouped according to the

Active Message index, for further analysis. Starting with the Health packets (AM 3), it

was observed that all packets were initiated from Nodes 1 and 2, with destination Node 0

(base station) and had payload length of 27 bytes. More specifically the payload length

started with 11 bytes and within the first packets stabilized to 27 bytes. Also the

interarrival time at the base station for each node was 11.734 seconds for the messages

originating from Node 1, and 11.735 seconds originating from Node 2.

In the data packets (AM 51) for this specific application and vendor, the same

originating source as well as payload length was observed as in the Health packets. The

interarrival time for these messages was 2.046 seconds for traffic moving from Node 1 to

base and 2.047 seconds when coming from Node 2.

The acknowledgement packets (AM 246), were transmitted only from the base

and had destination addresses of either one the two nodes or the broadcast (broadcast

address is: 65535). The payload length for those packets was 11 bytes and the interarrival

time interval from the base station to Node 1 was 12.219 seconds and to Node 2, 12.438

seconds.

The last packet type examined was the routing update packet (AM 250). Those

packets were broadcasted by both motes and the base to a destination address 65535. The

payload length was different for the base and nodes, with the base having payload length

40

21 bytes and the nodes 18 bytes respectively. The transmission interval time for the base

station was 33.248 seconds, for Node 1 46.969 seconds and finally for Node 2 41.082

seconds.

Summarizing, as can be seen in Table 6, it was observed for this wireless sensor

network setup that, depending on the packet type, specific constant values were used

from both motes and the base, according to originating and destination addresses, and

payload length. Any variation of those imposes integrity violations.

AM Type Originating

Node
Destination

Node
Payload
Length

Interarrival
Time

AM 3
(Health Packet)

1, 2 0 27 bytes 11.735 sec

AM 51
(Data Packet)

1, 2 0 27 bytes 2.046 sec

AM 246
(Acknowledgement

packet)

0 1,2, 65535 11 bytes 1 : 12.219 sec,
2 : 12.438 sec

AM 250
(Route update Packet)

0, 1, 2 Broadcast
(65535)

0 : 21 bytes,
1, 2 :18 bytes

0 : 33.248 sec,
1 : 46.969 sec,
2 : 41.082 sec

Table 6. Traffic characteristics for all Active Message type on direct scenario.

Integrity violations can easily then imply confidentiality violation, because if

someone is able to modify the packets content they likely can see and read the traffic. In

addition several other situations might arise if malicious code is placed in the payload.

The latter could execute a program in both the motes and the base causing the network to

collapse or transmit false readings as well as to cause availability issues by forcing the

motes to transmit in shorter intervals causing battery consumption.

2. Parent-Child Network Deployment

In this node deployment, where Node1 was relaying all traffic from Node 2 to the

base the following statistics were observed. A total of 5552 packets were captured within

an hour and as will be analyzed in the following paragraphs very similar statistics as

above were observed.

41

Figure 18 illustrates the percentage of the packets captured according to the

Active Message type. We can see that the Health packets were 12.55% of the total traffic,

and the Data packets 72.94%. Continuing, the Acknowledgement packets occupied

10.82%, and finally the Routing update packets 3. 67%.

Parent-Child Traffic Percentage

0

50

100

Active Type

Pe
rc

en
ta

ge

Series1

Series1 12.55403458 72.94668588 10.82492795 3.674351585

1 2 3 4

Figure 18. Traffic percentage statistics in accordance to Active Message type for the

Parent-Child setup.

A comparison of these two setup variations is illustrated in Figure 19 where we

observe a very small variation between the Health, Data and Acknowledgement packets.

The routing packets show a large variation, from 3.67% to 5.85%, a variation equal to

62.78383%.

Traffic Percentage Comparison

0

20

40

60

80

Active Message

Pe
rc

en
ta

ge

Series1
Series2

Series1 12.55403458 72.94668588 10.82492795 3.674351585

Series2 13.07393492 70.97369929 10.0999809 5.852384895

1 2 3 4

Figure 19. Traffic percentage statistics comparison in accordance to Active Message type
for Direct Base-Motes communication and Parent-Child setup.

42

At this point, it is important to understand that different network deployments,

number of motes, environmental conditions affect some of the traffic characteristics and

should always be considered by the network administrator.

Continuing, the analysis in this topology observed that the health packets (AM 3)

were originated from Node 2 to Node 1 and then from Node 1 to the base station. Of

course, in a larger network one would expect to see changes of the relay motes but not to

the nodes that relay to the base (since they are the ones in the closest vicinity to the base).

Those packets had payload lengths of 12 and 24 bytes, and the interarrival time for the

packets originating from Node 1 was 7.410 seconds, and for those originating from Node

2 18.655 seconds.

Next, the analysis of data packets (AM 51) found the same statistics as seen in the

first scenario examined above, except from the originating and destination addresses,

which was normal and expected. A small variation in the transmission interval time was

observed, where Node 1’s mean transmission time was 1.329 seconds, and for Node 2

2.861 seconds. This was expected due to the relay radio communication.

The acknowledgement packets (AM 246) where originated from the base station

with destination Node 1 and broadcast, and from Node 1 to Node 2. That introduced an

expected variation from the first scenario, where we had observed that only the base

station was transmitting Acknowledgement packets. All these type of packets had

payload length of 11 bytes. The transmission interval time from the base station to Node

1 was 10.325 seconds and from Node 2 to Node 1 was 12.218 seconds.

Finally, the routing update packets (AM 250) were broadcasted from all motes

with payload lengths 15 bytes for Nodes 1 and 2, and 18 bytes for the base station. The

mean transmission interval time, when originated from base station was found to be

16.678 seconds, and for Nodes 1 and 2 was calculated to be 19.266 and 18.549 seconds,

respectively.

Table 7 summarizes the traffic characteristics that were analyzed in the above on

the parent-child radio communications scenario.

43

AM Type Origin
Node

Destination
Node

Payload
Length

Interarrival
Time

AM 3
(Health Packet)

1
2

 0
 1

12 bytes
24 bytes

7.410 sec
18.655 sec

AM 51
(Data Packet)

1
2

 0
 1

27 bytes 1.329 sec
2.861 sec

AM 246
(Acknowledge-

ment packet)

0
1

 1, 65535
 2

11 bytes 1 : 10.325 sec,
2 : 12.218 sec

AM 250
(Route update

Packet)

0, 1, 2 Broadcast
(65535)

0 : 18 bytes,
1, 2 : 15 bytes

0 : 16.678 sec,
1 : 19.266 sec,
2 : 18.549 sec

Table 7. Traffic characteristics according to active message types for the parent-child
radio communication scheme.

In Figures 20 and 21, we can see the packet payload lengths for both the direct

and parent-child deployments respectively, and the number of packets associated with

each. Starting with Figure 20, the number of packets associated with each payload length

is 1605 packets with payload length 11 bytes, 1045 packets with payload of 12 bytes, 534

packets with payload of 18 bytes, 358 packets with payload of 21 bytes, 1006 packets

with payload of 24 bytes, and 11144 packets with payload of 27 bytes.

44

Paket length histogram
Direct Scenario

-2000

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Packet Length

Nu
m

be
r o

f p
ac

ke
ts

Series1

Figure 20. Number of packets vs. payload length in direct communication scenario.

In Figure 21, the number of packets associated with each payload length is, 601

packets with payload length 11 bytes, 310 packets with payload of 12 bytes, 93 packets

with payload of 15 bytes, 108 packets with payload of 18 bytes, 387 packets with payload

of 24 bytes, and 4050 packets with payload of 27 bytes. We should mention here that the

packets with payload of 15 bytes exist only in the parent-child topology and that

generally both traffic traces exhibit the same or similar characteristics.

45

Packet Length Histogram
Parent-Child scenario

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

Packet Length in Bytes

Nu
m

be
r o

f p
ac

ke
ts

Series1

Figure 21. Number of packets vs. Payload Length in Parent-Child communication

scenario.

In the above paragraphs, it was shown that when using the payload length as one

of parameters of normal behavior, we expected to see packets of 11, 12, 15, 18, 21, 24, 27

bytes long. Other statistics as a percentage of traffic relative to Active Message index was

proven to a reliable parameter. The above two parameters and how they are related to the

associated addresses, originating and destination, node IDs, interarrival and transmission

interval times, constitute unique traffic profiles.

B. ESTIMATING SELF SIMILARITY IN WSN
Another significant parameter for traffic analysis is the estimation of self

similarity. Form ref [14]:

A phenomenon that is self-similar looks the same or behaves the same
when viewed at different degrees of “magnification” or different scales on
a dimension.

The parameter used to estimate self-similarity is the Hurst parameter (H), and

provides a measure of its extent [20]. It was named after H.E. Hurst who studied water

46

levels of the Nile and other rivers. His research suggested that values of the Hurst

parameter H = 0.5 indicate the absence of long-range dependence while for values of H

= 1 indicate infinite long-term dependence [16]. In other words in the traffic examined

above, for large values of H the longer it has been since the arrival of a data packet the

longer it would be for the arrival of the next similar one, or if we want to express it

differently the sooner a packet type of one kind has arrived the more likely it is for

another one to arrive. For values of H less than 0.5 the arrival of a packet is independent

of the arrival of the last packet of the same type.

Another parameter used to model the extent of long term dependence introduced

in the paragraph above is the β parameter [16]. The long-range dependence is defined in

terms of the autocovariance and it is rapidly decreasing with time. A short-range

dependent process satisfies the condition that its autocovariance decays at least as fast as

exponentially while long-range dependent processes have a hyperbolically decaying

autocovariance [16]: () as , 0 1C k k k−∝ →∞ < <β β . The Hurst parameter is related

to the β parameter with the following relation: H= 1 – (β/2) [16]. As mentioned above

self similar traffic has a Hurst parameter equal to: 0.5 < H < 1 which means that the β

parameter takes the following values: 0 < β <1.

There are three common ways to measure self similarity: Variance-Time plot, R/S

plot, and the computation of Whittle’s estimator from the spectral density [16]. For this

thesis the first method was used.

A discrete random process x is said to be exactly self-similar with parameter β and

0 < β < 1 if for all m = 1, 2, … we have:

 () var()var()m xx
m

∼ β (1)

Then taking the logarithm of both sides of the previous equation, it allows to be

written as [16]:

 () () ()mlog[var x] log[var x] log m⎡ ⎤ −β⎣ ⎦ ∼ (2)

Now if we plot variance of x versus m on a log-log graph, the result should be a

straight line with a slope of β.

47

For the WSN traffic analysis, the above formula was used for both topologies, and

two plots for each were generated. First the logarithm of the variance of the payload

length was computed for 7 different aggregated average payload length windows of 10,

32, 100, 320, and 1000 packets. The corresponding plot is illustrated below in Figure 22.

The treadline corresponding to this plot is: y = -0.0207x + 1.5543 which indicates that β

parameter is equal to 0.0207 which according to the theory provided above suggests a

very high self-similarity with H = 0.9897.

Variance-Time Plot
Direct Scenario

y = -0.0207x + 1.5543

1.45

1.5

1.55

1.6

0 1 2 3 4

Aggregated Average Payload Length

Lo
g(

Va
r(

Pa
yl

oa
d

Pa
ck

et
 L

en
gt

h)
)

Series1
Linear (Series1)

Figure 22. Logarithm of Variance Payload Length vs. Aggregated Average Payload

Length Plot for the direct scenario.

Following the concept above the logarithm of the interarrival packet time versus

the aggregated time is plotted in Figure 23. The β parameter was found equal to 0.1039

which means that H is equal to 0.948 which suggests high self-similarity.

48

Variance-Time Plot
Direct Scenario

y = -0.1039x + 1.4441

0

0.5

1

1.5

0 1 2 3 4

Aggregated Times

Lo
g(

V
ar

(In
te

ra
rr

iv
al

Ti

m
e)

) Series1
Linear (Series1)

Figure 23. Logarithm of the Variance of packet Interarrival Time versus Aggregated

Time plot for the direct to base communication scenario.

For the parent-child topology the same calculations as in the two paragraphs

above were conducted, resulting in Figures 24 and 25. In Figure 24, the plot of the

logarithm of the variance of the packet payload length versus aggregated average length

is plotted that resulted in the following values for the β and H parameters: β = 0.0207 and

H = 0.9897 values that suggest very long term time dependence.

Variance-Time Plot
Parent-Child Scenario

y = -0.0207x + 1.5543

1.46

1.48

1.5

1.52

1.54

1.56

0 1 2 3 4

Aggregated Average Payload Length

Lo
g(

Va
r(P

ay
lo

ad

Le
ng

th
))

Series1
Linear (Series1)

Figure 24. Logarithm of variance of packet Payload Length versus Aggregated Average

Packet Length plot for the Parent-Child communication scenario.

49

Following the steps above the logarithm of the variance of the packet interarrival

time versus aggregated time is illustrated in Figure 25 where from the slope of the

treadline we see that β is equal to 0.2218 and so H = 0.8891. These values indicate high

self-similarity.

Variance-Time plot
Parent-Child Scenario

y = -0.2218x + 1.7094

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4

Aggragated Time Series

Lo
g(

V
ar

(In
te

ra
rr

iv
al

 T
im

e)
)

Series1
Linear (Series1)

Figure 25. Logarithm of the Variance of packet Interarrival Time versus Aggregated

Time plot for the Parent-Child communication scenario.

C. SUMMARY

Summarizing, it was shown that in a wireless sensor network the active message

index identifies different traffic type and can be successfully used as one way to

categorize traffic. The three type of traffic observed were Data, Routing (Routing Update

Message and Health packets), and Acknowledgements each of which had different

payload lengths, originating and destination addresses. Those differences were explicit

and any variation of these would imply a network attack. Next using the logarithm of the

variance of payload length and interarrival time for different time and length aggregations

showed that this traffic entailed self-similarity properties. It should be noted that the

sample size of collected packets was relatively small, potentially skewing the results,

however for the purposes of this thesis, they provide a good initial indicator.

The percentage of each traffic type was obtained, which found that data traffic

encompassed 71% of the total, health and routing 23%, and finally Acknowledgement

6%.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

VII. CONCLUSIONS AND FUTURE WORK

The human need for real time information on the physical environment has driven

the evolution of many technologies and applications. The wireless sensor network

satisfies that need, and the technology is growing exponentially. With sizes of less than

one half of a hand or sometimes one tenth of a penny, these devices provide a large

variety of information. Their applications extend from military to agricultural, from civil

engineering to health monitoring, and from catastrophe detection to home intelligence. In

areas that are not accessible or where there is no IT infrastructure, these networks provide

an inexpensive, easy to use and install solution for remote sensing, in real time.

A. CONCLUSIONS
Traffic capture and analysis on a wireless sensor network was performed

successfully and the statistical profiling that was performed revealed important

information. The traffic was characterized according to the Active Message (AM) index,

an index that indicates the handling of each message to the appropriate application. Four

different AM indexes were observed identifying Data, Routing, Health and

Acknowledgement types of traffic. Specific payload lengths, originating and destination

addresses, and interarrival times were identified for each packet type. Those traffic

statistics and characteristics were capable of producing a baseline for normal behavior.

The latter along with other parameters when compared with real time traffic patterns can

alert for traffic anomalies, and so can be used as an intrusion detection tool.

The examination of the packet length and the interarrival time of the packets in

different time aggregations, in a variance-time plot on logarithmic scale, indicated that

the traffic is self-similar. That was also witnessed by visual examination of the traffic,

where each packet type was clustered. This means that every packet is largely dependent

on the previous packets received, and upon reception of a specific message type, the same

packet type is more likely to be received.

A comparison of the different packet type payload lengths and interarrival times

exposed some discrepancies with the protocol specifications as they were explained in

Chapter V. The payload lengths observed ranged from 11 to 27 bytes and never exceeded

52

the 29 bytes, which was the maximum packet length for the protocol used. The Health

messages have the same properties as the Routing update messages, and the interarrival

time expected for low power radio transmission was 60 seconds. For the first direct

scenario this was calculated to be around to 11.735 seconds, which introduces a large

variation. A similar variation was found for the parent-child scenario with interarrival

times 7.41 and 18.65 seconds for Node 1 and 2 respectively. Moving to the data

messages, interarrival times were expected to be 10 seconds for high power transmissions

and for the direct scenario was calculated 2.046 seconds. For the parent-child scenario,

interarrival times were 2.861 and 1.329 seconds for Node 1 and 2 respectively. The

routing updates message interarrival time was expected to be 60 seconds for low power

and was measured, for the direct scenario, to be 46.969 and 41.082 seconds for each mote

that introduced a small variation in comparison to the parent-child scenario. In the latter

scenario the interarrival time was calculated to be 18.5495 and 19.266 seconds for the

two motes, respectively.

B. FUTURE WORK

Several topics are recommended for further research and are summarized as

follows.

A program that will generate alerts, based on the traffic anomalies produced with

the comparison of normal to real time traffic, should be written and be added to the

Sniffer program. Upon completion of this program, a functional intrusion detection

system will be available.

As seen in Chapter V, the CRC part of the packet was missing. The CRC is very

important for the examination of modification of the message, and an investigation on

why this part is not displayed and how this information can be captured should be

performed. Also the algorithm that is used for the payload part of the packet should be

retrieved, and the payload info should be used along with the rest packet information for

the traffic profiling.

In this thesis, a total of three motes were used for traffic capturing, where a

significant variation on the traffic characteristics was observed between direct and parent-

child topologies. Traffic capturing and profiling should be performed in a larger network

53

consisting of 20 or more motes, deployed to cover a larger geographical area. Also two

packet sniffers or more should be used for traffic capturing and then a cross comparison

of the traffic captured by each should take place.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

APPENDIX A.

A. SNIFFER JAVA CLASS
This is the main class of the Sniffer program [2]. The highlighted with blue color

are the lines added for this thesis.

 /* Sniffer.java
 * Main class for Sensor Network Sniffer.
 * Copyright (c) 2006 Hong-Siang Teo, Naval Postgraduate School (hteo@nps.edu).
 * All rights reserved.*/

import java.util.Iterator;
import java.util.LinkedList;
import java.util.StringTokenizer; //added categorization
import org.apache.commons.cli.*;
import java.io.*; //added

public class Sniffer {
 /*
 * Attributes and Options.
 */
 static String hostValue = "127.0.0.1";
 static int portValue = 9001;
 public static long packetCount = 0;
 public static long errorCount = 0;
 static Source source = null;
 static LinkedList<Output> outputsList = new LinkedList<Output> ();

 /**
 * @param args Command line arguments
 */
 public static void main(String[] args) {

 /*Copyright (c) 2006 Georgios Kirykos, Naval Postgraduate School
(gkirykos@nps.edu).
 * All rights reserved.*/

 //**

 outputtoCsv oscv = new outputtoCsv();//added for traffic categorization
 displayWindow dw = new displayWindow();//added for traffic categorization

56

 //**

 /*
 * The main work flow is as follows:
 * - Parse arguments
 * - Instantiates a Packer Server to read packets from
 * - Perform protocol processing
 * - Perform application processing
 * - Outputs to terminal, or file if -o is specified
 */

 // Parse arguments
 parseArgs (args);

 // Instantiates a new source, if it has not been instantiated already.
 // The default source is Serial Forwarder.
 if (source == null) {
 source = new SFSource (hostValue,portValue);
 }

 // Instantiates a Packet Server
 PacketServer packetServer = new PacketServer (source);
 if (packetServer.start() == false) { // try to start the packet server
 System.out.println("Error starting packet server");
 System.exit(1);
 }

 // Initialize outputs. ScreenOutput is always available.
 Writer.addOutput (new ScreenOutput ());
 try {
 Writer.open();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 try {
 Writer.close();
 } catch (Exception e1) {}
 }

 // Get and process packets
 for (;;) {
 // Get packet
 Packet packet = packetServer.getPacket();
 packetCount++;

57

 // Process packet
 try {
 Protocol.process (packet);
 AM.process (packet);

/************ Modified for Traffic Categorization August 28, 2006*************/
/*Copyright (c) 2006 Georgios Kirykos, Naval Postgraduate School (gkirykos@nps.edu).
 * All rights reserved.*/

 String tempPacket = ScreenOutput.generateOutputString (packet);
 StringTokenizer st = new StringTokenizer(tempPacket," ");

 System.out.println("Packet Categorization");
 String packetTime = st.nextToken(); //get time
 st.nextToken(); //ignore TOS
 String packetIDAM = st.nextToken(); //get GroupID,Destination and AM
 String numBytes = st.nextToken(); //get number of bytes
 String numberofBytes = numBytes.substring(1,3);//get the number without the
parenthesis of# bytes
 String packetData = st.nextToken(); //get data part
 String packetNodeID = packetData.substring(1,3); //get the first two data point
that identify node that packet was sent from

 st = new StringTokenizer(packetIDAM,.”"); //chop down Group ID field

 String packetGroupID = st.nextToken(); //get Grouo ID
 String packetDestination = st.nextToken(); // destination address
 String packetAM = st.nextToken(); // get AM number

 /*Put it in a format with commas for CSV process**********/

System.out.println("Group ID - Destination - AM - Time - Node ID - Number of
Bytes");
System.out.println(packetGroupID + " , " + packetDestination + " , " + packetAM
+ " , " + packetTime+ " , " + packetNodeID);

 oscv.printTraffic(packetGroupID , packetDestination , packetAM , packetTime ,
packetNodeID , numberofBytes);//Puts traffic elements into a CSV file
dw.displayTraffic(packetGroupID , packetDestination , packetAM , packetTime ,
packetNodeID , numberofBytes);//Display traffic window

 /************* End Modification for Traffic categorization ****************/

58

 catch (Exception e) {
 System.err.println(e.getMessage());
 }
 }
 }
 public void displayTraffic(String traffic)
 {
 }
 private static void parseArgs (String[] args) {
 /* Parse arguments. */
 CommandLine cmd = null;
 Options options = new Options ();
 // Define options
options.addOption (OptionBuilder.withArgName ("host")
.hasArg ()
.withDescription ("The host running Serial Forwarder. " +
"Can be a valid hostname or IP address. " + "Default is local host.")
 .create("h"));
 options.addOption (OptionBuilder.withArgName ("port")
 .hasArg ()
.withDescription ("Network port used by Serial Forwarder. " + "Default is 9001.")
 .create("p"));
 options.addOption (OptionBuilder.withArgName ("filename")
 .hasArg ()
 .withDescription ("Output to file in CSV format.")
 .create("oc"));
 options.addOption (OptionBuilder.withArgName ("filename")
 .hasArg ()
 .withDescription ("Output to file in raw binary format.")
 .create("ob"));
 options.addOption (OptionBuilder.withArgName ("filename")
 .hasArg ()
 .withDescription ("Log screen output to file.")
 .create("l"));
 options.addOption (OptionBuilder.withArgName ("mica|micaz|telos")
 .hasArg ()
 .withDescription ("Specifies TOS message format when
auto-detection fails.")
 .create("m"));
 options.addOption ("?,”false,"Print this help text.");

 // Parse command line options
 CommandLineParser parse = new BasicParser();
 try {
 cmd = parse.parse(options,args);

59

 } catch (ParseException e) {
 cmd = null;
 }
 if ((cmd == null) || (cmd.hasOption("?"))) {
 HelpFormatter f = new HelpFormatter();
 f.printHelp("java Sniffer,”options,true);
 if (cmd==null) {
 System.exit (1);
 } else {
 System.exit (0);
 }
 }
 // Perform some sanity checks, and set system settings based on options
 if (cmd.hasOption("h")) {
 hostValue = cmd.getOptionValue("h");
 // TODO: Sanity check on the host value?
 }
 if (cmd.hasOption("p")) {
 String portStr = cmd.getOptionValue("p");
 try {
 portValue = Integer.parseInt(portStr);
 } catch (NumberFormatException e) {
 System.out.println ("Port argument must be an integer.
Exiting.");
 System.exit(1);
 }
 if ((portValue<0) || portValue>65535) {
 System.out.println ("Invalid port argument. Exiting.");
 System.exit (1);
 }
 }
 if (cmd.hasOption("oc")) {
 String filename = cmd.getOptionValue("oc");
 Writer.addOutput (new CSVFileOutput (filename));
 }
 if (cmd.hasOption("ob")) {
 String filename = cmd.getOptionValue("ob");
 Writer.addOutput (new BinaryFileOutput (filename));
 }
 if (cmd.hasOption("l")) {
 String filename = cmd.getOptionValue("l");
 Writer.addOutput (new LogFileOutput (filename));
 }
 if (cmd.hasOption("m")) {
 String value = cmd.getOptionValue("m");
 if (value.equalsIgnoreCase("mica")) {

60

 Packet.msgFormat= Packet.MSGFORMAT_MICA;
 } else if (value.equalsIgnoreCase("micaz")) {
 Packet.msgFormat = Packet.MSGFORMAT_MICAZ;
 } else if (value.equalsIgnoreCase("telos")) {
 // telos appears to use the same format as MICAZ
 Packet.msgFormat = Packet.MSGFORMAT_MICAZ;

 } else {
 Packet.msgFormat = Packet.MSGFORMAT_UNKNOWN;

 }
 }
 }

}

B. ACTIVE MESSAGE JAVA CLASS

This java program was created to parse the components of the packets in such

way, so that all information of the packet will be ready for further analysis.

/* Added For packet categorization
 * activeMessage.java
 * Used to extract the AM value as well as: destination address, originating address,
group ID, time
 * Copyright (c) 2006 Georgios Kirykos, Naval Postgraduate School
(gkirykos@nps.edu).
 * All rights reserved.
 */

import java.util.StringTokenizer;

public class activeMessage {
 public void writeFile (Packet packet)
 {
 String line_item = new String();
 StringTokenizer st = new StringTokenizer(packet.toString()," ");
 while (st.hasMoreElements())
 {
 line_item = st.nextToken();
 System.out.println(line_item);
 }}}

61

C. OUTPUTTOCSV JAVA CLASS

This java class put in to a CSV file, values separated with comma.

/*Added For packet categorization
 * outputtoCsv.java
 * Used to map the AM value as well as: destination address, originating address, group
ID, time
 * to a CSV file (so then can be imported to an excel file) for further analysis and process
 * Copyright (c) 2006 Georgios Kirykos, Naval Postgraduate School
(gkirykos@nps.edu).
 * All rights reserved.
 */

import java.io.*;
//import javax.swing.*;
 class outputtoCsv {
 int count=0;
 String Filename="c:\\outputtocvs_parentChild.txt";
 public void printTraffic (String packetGroupID,String
packetDestination,String packetAM,String packetTime,String packetNodeID, String
numberofBytes)
 {
 count ++;
 if (count == 60000)
 {
 Filename+="1";
 }
 File cvs = new File(Filename);
 try
 {
 BufferedWriter cvsout = new BufferedWriter(new FileWriter(cvs,true));
 cvsout.write(packetGroupID + " , " + packetDestination + " , " +
packetAM + " , " + packetTime+ " , " + packetNodeID + " , " + numberofBytes);
 cvsout.newLine();
 cvsout.close();
 }
 catch (IOException e)
 {
 }}}

D. DISPLAYWINDOW JAVA CLASS

Provides a GUI for the traffic elements.

/*
 Added For packet categorization
 * displayWindow.java

62

 * Used to display the AM value as well as: destination address, originating address,
group ID, time
 * Copyright (c) 2006 Georgios Kirykos, Naval Postgraduate School
(gkirykos@nps.edu).
 * All rights reserved.
 */
 import javax.swing.*;
 class displayWindow {
 JFrame jf = new JFrame("Traffic Categorization");
 JTextArea out = new JTextArea("Group ID - Destination - AM - Time -
Node ID - Number of Bytes ");
 public displayWindow() {
 jf.add(out);
 jf.setSize(600,500);
 jf.setLocation(300, 150);
 out.setVisible(true);
 jf.setVisible(true);
 }
 public void displayTraffic (String packetGroupID,String
packetDestination,String packetAM,String packetTime,String packetNodeID,String
numberofBytes) {
 String temp;
 temp = out.getText() + "\n";
 temp += packetGroupID + " , " + packetDestination + " ,
" + packetAM + " , " + packetTime+ " , " + packetNodeID + " , "
+ numberofBytes;
 out.setText(temp);
 } }

63

APPENDIX B.

The scope for this appendix is to provide the user with some basic setting needed

to configure the Serial Forwarder. All information needed to set up the WSN, in terms of

installing the TinyOS, program the micaz’s and the TelosB can be found in reference [1].

In order to determine the USB port that the TelosB is connected to the PC that is

used for the packet capturing the user should open cygwin window and type: motelist.

The outcome is printed below and consists of three columns, where the second one with

Heading CommPort identifies the comm. That the TelosB is connected:

Moving to the Serial Forwarder setting, the user should stop the server and enter

the following settings: Communication port and baud rate, which for this experiment

where respectfully com4 and 57600. A help button is also available and its display as

well the above settings are illustrated in the following figure:

64

65

LIST OF REFERENCES

1. Crossbow Technology Inc., “Wireless Sensor Networks Seminar,” San Jose,
February 7-9, 2006.

2. Ethereal, http://www.ethereal.com/introduction.html. Last accessed November
2006.

3. Tcpdump, http://www.tcpdump.org/tcpdump_man.html. Last accessed November
2006.

4. Hong-Siang Teo, “Security of Sensor Networks,” Master’s Thesis, Naval
Postgraduate School, June 2006.

5. Mohammad Ilyas and Imad Mahgoub, “Handbook of Sensor Networks: Compact
Wireless and Wired Sensing Systems,” CRC Press, 2005.

6. SECON, http://www.ieee-secon.org. Last accessed November 2006.

7. Feng Zhao and Leonidas Guibas, “Wireless Sensor Networks, An Information
Processing Approach,” Morgan Kaufmann, 2004.

8. Wikipedia, http://www.wikipedia.com/wiki/MEMS. Last accessed October 2006.

9. SUMMiTTM Technologies, www.mems.sandia.gov . Last accessed October
2006.

10. MEMS and Nanotechnology Exchange Inc., www.mems-exchange.org/mems/.
Last accessed in October 2006.

11. TinyOS, http://www.tinyos.net. Last accessed October 2006.

12. Crossbow Technology Inc., “Xmesh User’s Manual,” March 2006.

13. TinyOS, http://www.tinyos.net/tinyos-x/doc/serialcomm/description.html. Last
accessed December 2006.

14. TinyOS, http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson6.html. Last accessed
December 2006.

15. Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Maureen Stillman and
Felix Wu, “The Common Intrusion Detection Framework Architecture,”
http://gost.isi.edu/cidf/drafts/communication.txt. Last accessed November 2006.

16. William Stallings, “High-Speed networks and Internets,” 2nd ed. Prentice Hall,
1996, ch. 9.

66

17. William Stallings, “Wireless Communications and Networks,” 2nd ed., Pearson,
2005.

18. Crossbow Inc., http://www.xbow.com. Last accessed October 2006.

19. Berkeley University of California, http://www.coe.berkeley.edu
/archive/users/warneke-brett/SmartDust/index.html. Last accessed October 2006.

20. Smartdust Inc., http:/www.smartdust.com. Last accessed October 2006.

67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Chairman
Department of Physics
Naval Postgraduate School
Monterey, California

5. Professor John McEachen
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Professor Murali Tummala
Department of Physics
Naval Postgraduate School
Monterey, California

7. Embassy of Greece, Naval Attaché
 Washington DC

8. LT Georgios Kirykos

Hellenic Navy General Staff
Athens, Greece

